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Abstract

The comparison and inherent relationship between two influencing sensor placement methods, i.e. modal kinetic energy

(MKE) and effective independence (EI), are addressed in this paper. The problem is of primary concern for dynamic

testing, damage identification and structural health monitoring. By analyzing the sensor placement problem with EI

method from the perspective of a new reduced system, the connection of MKE with EI method is revealed. The latter is an

iterated version of the former, and the reduced mode shapes are ortho-normalized repeatedly during iterations of the latter.

Two alternative forms for efficient computation of the iterative EI method are presented. Finally, both methods are

applied to the I-40 Bridge located over the Rio Grande in Albuquerque, New Mexico, and the derived relationship is

verified.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Before outlining the paper, we describe the motivations, introduce the basics of the two sensor placement
methods, and discuss their differences and connections.
1.1. Motivations

The problem of sensor placement is an importance issue in dynamic testing of large structures, and has been
investigated from different approaches, as can be seen from the abundance of literature [1–3], and the
references therein. Especially due to the increasing interest of damage identification and structural health
monitoring (SHM) in last two decades, more researchers are involved in this topic, and methods from various
perspectives are proposed [4,5]. The key ideas behind these approaches are, however, similar. Most sensor
placement methods aim to achieve best sensitivity changes’ detection of signatures indicating damage, or the
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best identification of structural characteristics, including the eigenfrequencies, mode shapes, and also damping
ratios. Although a single eigenfrequency or mode shape is not definitely sensitive and sufficient enough for
detecting the existence of damage in SHM, the combination of them, such as those used in subspace-based
damage identification method [6], shows great potentials. In this connection, the eigenfrequencies
and the mode shapes are to be identified as accurately as possible, and server as a benchmark database for
the following model updating, and damage identification. This is the objective of the two methods to be
discussed, the modal kinetic energy (MKE) and the effective independence (EI) method, which is the most
influential and commonly used. The EI is recommend by Ewins [7], Heylen et al. [8], and Friswell and
Mottershead [9] for modal testing and modal updating, and already embedded in commercial software MSC/
NASTRAN [10].

Although the theory of both MKE and EI methods are quite straightforward and well developed, and both
are widely discussed and applied, the same degree of understanding cannot be said to exist. Researchers may
notice that EI can arrive at similar results as that of MKE in many circumstances, and may have a vague
feeling that MKE and EI have something in common. Their relationship, which was thought to be important
on the basis of theoretical considerations and on the development of other effective sensor placement methods,
is not explicitly and mathematically reported. This is the topic of our present work. From the viewpoint of the
authors, the difference and consistency of MKE and EI will increase the understanding of both methods, and
the role of each candidate sensor position played in EI.
1.2. Problem formulation of sensor placement

The sensor placement problem can be investigated from uncoupled modal coordinates of governing
structural equations as follows:

€qi þM�1i Ci _qi þM�1i Kiqi ¼M�1i UTB0u,

y ¼ Uqþ e, ð1Þ

where qi is the ith modal coordinate and is also the ith element of the vector, q, in the 2nd equation, Mi, Ki and
Ci are the corresponding ith modal mass, stiffness and damping matrix, respectively, U is the mode shape
matrix with its ith column as the ith mass-normalized mode shape, B0 is simply a location matrix formed by
ones (corresponding to actuators) and zeros (no loadings), specifying the positions of the force vector u. The
superscripts �1 and T represent inversion and transpose of a matrix, respectively. y is a measurement column
vector indicating which positions of the structure are measured, and e is a stationary Gaussian white noise
with zero mean and a variance of W2

0.
Sensor placement problem described in Model (1) is, essentially, divided into three aspects. Firstly,

what is the least number of accelerometers required to be installed in a structure for a successful
dynamic testing? Secondly, where should these accelerometers be installed, including those additional ones if
available? And if these additional sensors are available, should we install them as redundant sensors or place
them in other positions? Lastly, how could we evaluate the effectiveness of different sensor placement
methods?

The first problem is partly resolved. It is known that the minimum number of sensors to be instrumented
could not be less than the number of mode shapes to be identified, which is determined by the observability of
the system. Moreover, the practical number of sensors, which is limitedly preset before test due to the
availability of instruments, is usually larger than the minimum number because of the requirement to visualize
the identified mode shapes [11].

The second problem is the core and amazing one, which depends largely, however, on the third aspect. As
mentioned in the introduction, the MKE and EI methods discussed in this paper aim both to the best
identification of the eigenfrequencies and mode shapes. There are, of course, other objectives for sensor
placement, for instance, to decrease the uncertainties of parameters to be identified [12–13], to increase mutual
information [14]. A specific objective depends on its applications. We will not discuss further the third aspect
of the sensor placement problem in this paper, which is beyond the current scope. Therefore, only the second
problem is left, and is the focus of this work. Without loss of generality, it is assumed here that the total
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degrees of freedom (dofs) of the structure described in Model (1) is n, the number of mode shapes used for
sensor placement is k, and the available number of sensors is m. Then the sensor placement problem becomes,
basically, where to deploy the m available sensors out of the total n dofs of a structure for dynamic testing, i.e.
which rows of the measurement vector y in Eq. (1) are to be selected. MKE and EI give apparent different
solutions to this problem. However, there is an underlying connection between these two solutions, which is
unknown before and will be discussed in this paper.
1.3. Outline of the paper

This paper is structured as follows. Section 2 describes the rationale and basis of the MKE and EI methods.
In Section 3, the connection of both methods is derived, and the physical significance of the EI method is
recapitulated. Section 4 discusses the effect of non homo-generous mass distribution on MKE, and the
computation aspects of EI. In Section 5, both MKE and EI are applied on the I-40 Bridge to verify their
connection. Finally, the results and contributions of this paper are presented.
2. MKE and EI

Both MKE and EI methods have found many applications in actual dynamic testing, and obtained
reasonable results. Their theoretical background and rationale are to be explained in this section. The material
presented here is well known [1–3], and expounded repeatedly for the sake of clarity and our derivation of
their relationship in Section 3.
2.1. The MKE method

The MKE provides a rough measure of the dynamic contribution of each candidate sensor to the target
mode shapes. The reason to adopt MKE resides in that it tells which dofs capture most of the relevant
dynamic features of the structure. MKE helps to select those sensor positions with possible large amplitudes,
and to increase the signal to noise ratio, which is critical in harsh and noisy circumstances [2,3].

The method ranks all candidate sensor positions by their MKE indices as follows:

MKEpq ¼ Upq

Xn

s¼1

MpsUsq (2)

where MKEpq is the kinetic energy associated with the pth dof in the qth target mode, Upq is the pth
component in the corresponding qth mode shape, Mpq is the term in the pth row and sth column of the mass
matrix M, and Usq is the sth coefficient in the qth target mode shape. The sensor locations with higher values
of MKE are selected as measurement sensor set.
2.2. The EI method

The aim of the EI method is to select measurement positions that make the mode shapes of interest as
linearly independent as possible while containing sufficient information about the target modal responses in
the measurements [2,15–18]. The method originates from estimation theory by sensitivity analysis of the
parameters to be estimated, and then it arrives at the maximization of the Fisher information matrix, for
instance, the determinant or the trace, as well as to minimize the condition number of the information matrix.
It is reflected in the coefficient variance–covariance matrix. Thus, the covariance matrix of the estimate error
of the modal coordinates would be minimized. The number of sensors is reduced from an initially large
candidate set in an iterative manner by removing sensors from those dofs, which contribute least among all the
candidate sensors to the linear independence of the target modes. In the end, it preserves the required
necessary candidate sensors as the optimal sensor set.
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From the measurement output expression in Eq. (1), the EI analyzes the covariance matrix of the estimate
error for an efficient unbiased estimator as follows:

E ðq� q̂Þðq� q̂ÞT
� �

¼
qy
qq

� �T

W2
0

� ��1 qy
qq

� �" #�1
¼

1

W2
0

UTU

" #�1
¼ Q�1, (3)

in which Q is the Fisher information matrix, W2
0 represents the variance of the stationary Gaussian

measurement white noise e in Eq. (1), E denotes the expected value, and q̂ is the efficient unbiased estimator of
q. Maximizing Q will result in the best state estimate of q. In practice, the analysis begins by solving the
following eigenvalue equation:

UTU� lI
� �

w ¼ 0, (4)

where w are the orthogonal eigenvectors. The EI coefficients of the candidate sensors are computed by the
following formation:

ED ¼ Uw½ � � Uw½ �l�1 � 1, (5)

in which � represents a term-by-term matrix multiplication, 1 is an n� 1 column vector with all elements of 1.
ED is the EI indices, which evaluate the contribution of a candidate sensor location to the linear independence
of the modal partitions U.

The selection procedure is to sort the elements of the ED coefficients, and to remove the smallest one at a
time. The ED coefficients are then updated according to the new modal shape matrix, and the process is
repeated iteratively until the number of remained sensors equals to a preset value. The remained dofs serve as
the measurement locations, referring to Kammer [2] for details of the EI theory.

3. The relationship between MKE and EI methods

In previous investigations of comparisons among different sensor placement methods [2,3,15–18], the EI
and MKE show similar results, especially for the first several iterations of the EI and MKE in the cases of
structures with homogeneous mass distributions. However, the connection between both influential methods is
not clearly understood, at least to the knowledge of the authors from the literature. In this section, the latent
connection between both methods is revealed.

For simplicity to expose the relationship between MKE and EI, an identity equivalent mass matrix is
assumed at first, and then the effects of non-identity equivalent mass matrix on sensor placement will be
discussed in Section 4. Under the assumption of an identity equivalent mass matrix and normalized mode
shapes with respect to the mass matrix, the MKE index can be rewritten as the following formula:

MKE ¼ diagðUUTÞ, (6)

where operator diag denotes a column vector formed by the diagonal terms of a matrix. Similarly, the EI index
can be alternatively computed as the diagonal of the following matrix [2]:

ED ¼ diagðU UTU
� ��1

UTÞ. (7)

From the above Eqs. (6) and (7), it can be certainly observed that the result of the first iteration of EI should
be the same as that of the MKE, which is already shown clearly in the examples of references using EI methods
[2,3,15–18]. This is simply due to the fact that the mode shape matrix is normalized in the first iteration of EI,
and the middle term in the right-hand side of Eq. (7) is just an identity matrix. The two formations of EI and
MKE are identical under this circumstance. It is, therefore, unnecessary to apply MKE first when
implementing EI as originally proposed by Kramer [2]. In the following iterations, the EI indices are weighted
by an inversion term of the reduced Fisher information matrix, but the MKE is not. And this is why EI is
different from MKE afterwards.

When the EI in the second iteration is considered, we found that the measured sensor output formulated in
Eq. (1) should be rewritten because a previously assumed output component is not measured anymore.
Without loss of generality, the kth index of EI in Eq. (7) in the first iteration is assumed to be the smallest and
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to be excluded. Then, the reduced output vector in Eq. (1) should be reformulated as follows:

y1 ¼ U1q1 þ e1, (8)

where, y1 denotes the remained measurements with the kth measurement deleted in y of the Eq. (1), and e1 is
the corresponding stationary Gaussian measurement white noise, and likewise, U1is the same mode shape
matrix as U in Eq. (1) only with the kth row deleted, q1 is a new modal coordinate vector with the same
dimensions as that of q in Eq. (1). The model described in Eq. (8) becomes a reduced system with only n�1
dofs since the previous kth dof in the original model is rejected.

Basically, we view sensor placement broadly as a problem of system reduction, and the low-dimensional
reduced system defined in Eq. (8) is to represent the original full-scale system in Eq. (1) as exactly as possible.
The information discarded by excluding n�k sensor positions should be insignificant compared to the k

sensors retained.
In this new reduced system with order of n�1, the mode shape matrix should be renormalized as the original

system. Following the same procedures similar from Eq. (3) to Eq. (5) with ortho-normalized mode shapes
(UT

1U1 ¼ I), a formulation with the same rationale can be easily obtained:

ED1 ¼ diagðU1 UT
1U1

� ��1
UT

1 Þ ¼ diagðU1U
T
1 Þ. (9)

The EI index in Eq. (9) is degenerated once again in form into the MKE index of Eq. (6) in its 2nd iteration.
Therefore, the key difference between EI and MKE is that in the following iterations of EI, the reduced mode
shape matrix is not renormalized, but the MKE is initially using an already normalized mode shape matrix.
A reorthonormalized EI in its iterations is merely MKE.

To strengthen our arguments further, we consider a special case, in which only one mode shape is
considered to compute for sensor placement by MKE and EI, respectively. In this case, the MKE indices are
simply the squares of the mode shape components corresponding to the sensor positions in Eq. (6), i.e.
MKEi ¼ U2

i , and the EI indices (EDi ¼ U2
i =ð
Pn

i¼1U
2
i Þ) are the squares of the mode shape components only

divided by a constant (the squared Euclidean norm of the mode shape according to Eq. (7)). The only
difference between both indices is a constant coefficient. Their ranked sequence is the same, no matter how
many sensors are to be used.

We can now consider EI from another viewpoint. The mode shapes used in EI, regardless of ortho-
normalized or not, can be decomposed using orthogonal–triangular decomposition (QR) as follows [19–21]:

U ¼ QR, (10)

where Q is an n� k unitary matrix with the same dimensions as U, and R is a k� k upper triangular matrix.
Thus, the EI index can be also computed using the above decomposedQ and Rmatrix by substituting Eq. (10)
into Eq. (7):

ED ¼ diagðQR RTQTQR
� ��1

RTQTÞ ¼ diagðQQTÞ. (11)

The expression of EI in Eq. (11) is the same in form as that of MKE in Eq. (6). In each iteration of EI, it
computes ‘‘MKE index’’ using the reduced ortho-normalized mode shapes, retains dofs with large MKEs, and
deletes those with small MKEs.

The rationale behind the QR decomposition in Eq. (10) is the same as the above reasoning for the idea of
viewing sensor placement as system reduction. QR decomposition is, in fact, an extension of the
Gram–Schmidt orthogonalization applying to the dependent columns of reduced mode shapes U1, which is
not strictly orthogonal anymore after certain row of the previous orthogonal mode shapes is deleted in the
proceeding iteration. Consequently, the QR decomposition in Eq. (10) extracts an orthogonal subspace
spanned by the columns of Q. The Q in Eq. (10) is an n� k ortho-normal matrix. This means that the columns
of the reduced mode shape matrix U1 resulted from iterations of EI will be remapped onto the subspace
spanned by the ortho-normalized columns of Q. And it is exactly these columns of Q that will combine to
form the reduced measurement vector y. In dynamic testing, it is also these columns of Q that are identified as
mode shapes of the reduced system being measured.
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As a result, the difference and consistency between MKE and EI is clear. EI requires iteration
computations, but MKE does not. In the following iterations of EI, it redistributes the MKE into the retaining
dofs and recomputed their MKE index for the reduced system using re-orthonormalized mode shapes. EI is an
iterated version of MKE with re-orthonormalized mode shapes.
Fig. 1. Location of shaker and accelerometers of the I-40 Bridge.

Fig. 2. Modal kinetic energy distribution. Black column: MKE indices for all candidate sensor positions; white column: MKE indices of

selected 6 dofs, right upper numbers indicate the sequence of their relative importance.
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4. Mass distribution effects

For cases of non-identity equivalent mass matrix, the above reasoning can be generalized. The MKE index
is computed by

MKE ¼ diagðMUUTÞ ¼ diagðM1=2UUTM1=2Þ, (12)

where M1/2 is the square root of the semi-definite mass matrix M. In MKE, each candidate dof is weighted by
the corresponding component in the mass matrix. For those dofs associated with large components in the mass
matrix, they are given more weights in the ranking of their importance for sensor placement. Hence, MKE
reflects the characteristics of mass distribution for a given structure.

Moreover, the EI index can still be computed using Eq. (7) regardless of mass distribution. To analyze the
iterations of EI, the Sherman–Morrision-formula can be employed [19]:

UT
ðiÞUðiÞ

h i�1
¼ UTU�UiU

T
i

� ��1
¼ UTU
� ��1

þ
UTU
� ��1

UiU
T
i UTU
� ��1

1�UT
i UTU
� ��1

Ui

, (13)

where U(i) is the same mode shape matrix as U only with the ith row deleted, Ui is a column vector that
is the transpose of the ith row of the mode shape matrix U to be deleted in an iteration of EI. The EI index
can be computed using Eq. (13) to facilitate the inversion of the middle term in Eq. (7) in the following
iterations.
Fig. 3. Effective independence distribution. Black column: first EI iteration, left upper numbers indicate the sequence of their relative

importance; white column: final EI indices of selected 6 dofs.
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Since the mode shapes in the original system is ortho-normalized, Eq. (13) in the first iteration of EI is
reduced to

UT
ðiÞUðiÞ

h i�1
¼ Iþ

UiU
T
i

1�UT
i Ui

. (14)

It is obvious that the left-hand side of Eq. (14) does not deviate much from an identity matrix because the EI
method selects a row with a smallest norm in the original mode shape matrix to delete. The second term in the
right-hand side of Eq. (14) is just a small perturbation matrix and insignificant. At least the inverse in Eq. (14)
is a diagonal dominant matrix. Hence, the inverse middle term in Eq. (7) can be regarded as weights for the
mode shapes of a reduced system after certain dofs have been sequentially deleted. Therefore, the EI method
adds different weights for the remaining mode shapes during its iterations, whereas MKE adds weights for
each candidate dof.

Pre-multiplying both sides of Eq. (13) with Ur and post-multiplying with UT
r , we can obtain a simple

efficient expression for the iterative computation of the EI index:

hrrðiÞ ¼ hrr þ
h2

ri

1� hii

, (15)

where hrr(i) is the rth diagonal term of the expression in the bracket of the right hand side of Eq. (7) with the ith
row of the mode shape matrix in U deleted, and hrr is the rth diagonal term of the full mode shape matrix U,
and likewise hii and hri. The hrr is called as leverage of each predicted value on its actual measurement y in
statistics [20]. As stated above, the EI method iterates to delete rows corresponding to small hii. The iterative
Fig. 4. Modal kinetic energy distribution. Black column: MKE indices for all candidate sensor positions; white column: MKE indices of

selected 8 dofs, right upper numbers indicate the sequence of their relative importance.
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EI index, the change of the EI index after the ith row of the previous mode shape matrix is deleted, can be
efficiently computed using Eq. (15) without the computational burden of matrix inversion.
5. Application to the I-40 Bridge

The application of both MKE and EI is demonstrated using the measurement data of the I-40 Bridge,
located over the Rio Grande in Albuquerque, New Mexico. The I-40 Bridge consists of twin spans made up of
a concrete deck supported by two welded-steel plate girders and three steel stringers. The tested section has
three spans. The end spans are of equal length, approximately 39.9m, and the center span is approximately
49.4m long.

There are in total 13 accelerometers used along the length of the bridge, for a total of 26 responses. The
shaker consists of a 96.5 kN reaction mass supported by three air springs resting on top of drums filled with
sand. The shaker was located on the eastern-most span directly above the south plate girder and midway
between the abutment and first pier. Fig. 1 shows the shaker and accelerometer locations. Full details of the
modal testing of this bridge can be found in Farrar et al. [22].

The mode shapes extracted from the case of ‘‘Test t11tr’’ are used for the computation of sensor placement
of both MKE and EI. In this bridge, there are in total 26 dofs (n ¼ 26), and 6 identified mode shapes (k ¼ 6)
available. Three cases are considered in this paper. In Case 1, 25 accelerometers will be deployed (m ¼ 25).
This case corresponds to the first iteration of EI. In Case 2, 6 accelerometers will be used (m ¼ 6). The number
of accelerometers used in Case 2 is the minimum number to identify the 6 mode shapes. In Case 3, 8
accelerometers will be used (m ¼ 8).
Fig. 5. Effective independence distribution. Black column: first EI iteration; white column: final EI indices of selected 8 dofs, right lower

numbers indicate the sequence of their relative importance.
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In Case 1, both MKE and EI pick sensor position ‘‘S1’’ for exclusion, and their ranking sequences are
identical. For Case 2, the ranking sequence of MKE (Fig. 2) in descending order is S7, N7, N3, S3, N11, and
S11. The dofs in horizontal axis of Fig. 2, as well as Figs. 3–5, are numbered as 1, 2,y, 13 for candidate sensor
positions S1, S2, y, S13 in Fig. 1, and 14, 15,y, 26 for N1, N2,y, N13, respectively. As shown in Fig. 3, the
same six sensor positions chosen by MKE are also selected by EI. However, their relative importance is
different from that of MKE. In EI, the six sensor positions are of equal importance since their EI indices are
all 1 as shown by the white columns in Fig. 3. It is worth to note that all the middle-span positions are picked
up by both MKE and EI in Case 2. Moreover, the numbers on the left upper corner of the black columns in
Fig. 3 indicate the EI indices in its first iteration. The six sensor positions are ranked in the same order of
importance by EI (Fig. 3) as by MKE (Fig. 2), note the different vertical scales. The first iterations of both
MKE and EI result in the same candidate sensor sequence for both Cases 1 and 2. This agrees with our
derivation in Section 4, the outcome of the first iteration of EI should be the same as that of the MKE.

Figs. 4 and 5 show the results of MKE and EI in Case 3. By MKE, the selected 8 sensor positions are S7,
N7, N3, S3, N11, S11, S12, and N2, whereas the selected 8 sensor positions by EI are N3, S3, S7, N7, N11,
S11, S12, and N12. Both sequences are given in descending order of relative importance, as determined by
their MKE or EI indices. The essential difference between MKE and EI resides in the 8th sensor. It turns out
MKE selects N2 as its 8th sensor, whereas EI chooses N12. It shows clearly that not only the selected sensors
are different by MKE and EI, but their relative importance are not in the same order, even for the first 5
sensors that are identified both by MKE and EI. This verifies further the observation in the end of Section 5
that EI iteratively redistributes the MKE into the retaining dofs, and reranks their relative importance.

6. Conclusions

Two influential sensor placement methods, i.e. modal kinetic energy (MKE) method and effective
independence (EI) method, are discussed and compared, and the connection between the two methods is
derived. MKE ranks the relative importance of all candidate dofs by their kinetic energy with the mass
distribution associated with each dof as weights. EI is an iterated version of MKE with re-orthonormalized
mode shapes regardless of mass distribution of a structure. It is found that the latter is an iterated version of
the former for the case of a structure with equivalent identity mass matrix.

The application of MKE and EI on the I-40 Bridge demonstrate their connections. Although both MKE
and EI give similar results for the cases of sensor number 25, and 6, they select different sensor combinations
for the case of sensor number 8.

Furthermore, this paper provides two efficient alternative forms to compute the EI index. One is the stable
QR method as shown in Eq. (11), and the other is the iterative row deletion method in Eq. (15).
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[4] D. Balageas, C.P. Fritzen, A. Güemes, Structural Health Monitoring, ISTE, London, UK, 2006.

[5] D.S. Li, H.N. Li, C.P. Fritzen, On the physical significance of the norm based sensor placement method, Proceedings of the Third

European Workshop on Structural Health Monitoring, Granada, Spain, 5–7 July 2006, pp. 1542–1550.



ARTICLE IN PRESS
D.S. Li et al. / Journal of Sound and Vibration 305 (2007) 945–955 955
[6] M. Basseville, M. Abdelghani, A. Benveniste, Subspace-based fault detection algorithms for vibration monitoring, Automatica 36 (1)

(2000) 101–109.

[7] D.J. Ewins, Modal Testing; Theory, Practice, and Application, Research Studies Press, London, UK, 2000.

[8] W. Heylen, S. Lammens, P. Sas, Modal Analysis Theory and Testing, Katholeike University Leuven, Belgium, 1998.

[9] M.I. Friswell, J.E. Mottershead, Finite Element Model Updating in Structural Dynamics, Dordrecht, Kluwer, 1995.

[10] J. Peck, I. Torres, A DMAP Program for the selection of accelerometer locations in MSC/ NASTRAN, Proceedings of the 45th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, United States, 2004,

pp. 19–22.

[11] C.R. Pickrel, A practical approach to modal pretest design, Mechanical Systems and Signal processing 13 (2) (1999) 271–295.

[12] C. Papadimitriou, Optimal sensor placement methodology for parametric identification of structural systems, Journal of Sound and

Vibration 278 (4) (2004) 923–947.

[13] E. Heredia-Zavoni, L. Esteva, Optimal instrumentation of uncertain structural systems subject to earthquake ground motions,

Earthquake Engineering and Structural Dynamics 27 (4) (1998) 343–362.

[14] I. Trendafilova, W. Heylen, H. Van Brussel, Measurement point selection in damage detection using the mutual information concept,

Smart Materials and Structures 10 (3) (2001) 528–533.

[15] D.C. Kammer, M.L. Tinker, Optimal placement of tri-axial accelerometers for modal vibration tests, Mechanical systems and signal

processing 18 (2004) 29–41.

[16] G. Heo, M.L. wang, D. Satpathi, Optimal transducer placement for health monitoring of long span bridge, Soil Dynamics and

Earthquake Engineering 16 (1997) 495–502.

[17] M. Meo, G. Zumpano, On the optimal sensor placement techniques for a bridge structure, Engineering Structures 27 (2005)

1488–1497.

[18] Glassburn, R.S., 1994. Evaluation of sensor placement algorithms for on-orbit identification of space platforms, Master Thesis,

Department of mechanical engineering, University of Kentucky, USA.

[19] P.E. Gill, W. Murray, M.H. Wright, Numerical Linear Algebra and Optimization, Addison-Wesley, Redwood City, CA, USA, 1991.

[20] R.D. Cook, S. Weisberg, Residuals and Influence in Regression, Chapman & Hall, London, 1982.

[21] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, London, 1990.

[22] C. R. Farrar, W.E. Baker, T.M. Bell, K.M. Cone, T.W. Darling, T.A. Duffey, A. Eklund, A. Migliori, Dynamic characterization and

damage detection in the I-40 Bridge over the Rio Grande, Los Alamos National Laboratory Report LA-12767-MS, June 1994.


	The connection between effective independence and modal kinetic energy methods for sensor placement
	Introduction
	Motivations
	Problem formulation of sensor placement
	Outline of the paper

	MKE and EI
	The MKE method
	The EI method

	The relationship between MKE and EI methods
	Mass distribution effects
	Application to the I-40 Bridge
	Conclusions
	Acknowledgments
	References


